• Construction Start
    2014
  • User Program Begins
    2023
  • In-Kind Partners
    37
  • Staff
    426
  • Facility Control Points
    1.68x10ˆ6
  • Completion Status Q3
    39%

Site

Lund, Sweden

3 °

-6.4 ° 2.5 °

Partly cloudy

Media

Neutron News 2017

Institut Laue-Langevin

ILL D20’s neutron beam yields important clues to the unconventional origins of superconductivity

Iron-based superconductors contain layers of iron and a pnictogen – such as arsenic or phosphorus – or a chalcogen, like oxygen or selenium. Previously dismissed as weak candidates for superconductivity, iron-based superconductors took the science community by surprise when it was discovered that the new iron arsenide family had very high transition temperatures.

 

Since then these high-temperature superconductors have become a hot topic of research, with neutrons and muons playing an essential role in investigating their unusual properties, in order to help quantum physics develop a theory behind high-temperature superconductive materials.

 

A team of researchers from the Tokyo Institute of Technology, Ibaraki University, the Institute of...

Quanta Magazine

Neutrinos Suggest Solution to Mystery of Universe’s Existence

Updated results from a Japanese neutrino experiment continue to reveal an inconsistency in the way that matter and antimatter behave.

 

From above, you might mistake the hole in the ground for a gigantic elevator shaft. Instead, it leads to an experiment that might reveal why matter didn’t disappear in a puff of radiation shortly after the Big Bang.

 

I’m at the Japan Proton Accelerator Research Complex, or J-PARC — a remote and well-guarded government facility in Tokai, about an hour’s train ride north of Tokyo. The experiment here, called T2K (for Tokai-to-Kamioka) produces a beam of the subatomic particles called neutrinos. The beam travels through 295 kilometers of rock to the Super-Kamiokande (Super-K) detector, a gigantic pit buried 1...

Nature Communications

Magnetostriction-polarization coupling in multiferroic Mn2MnWO6

Double corundum-related polar magnets are promising materials for multiferroic and magnetoelectric applications in spintronics. However, their design and synthesis is a challenge, and magnetoelectric coupling has only been observed in Ni3TeO6 among the known double corundum compounds to date.

 

Here we address the high-pressure synthesis of a new polar and antiferromagnetic corundum derivative Mn2MnWO6, which adopts the Ni3TeO6-type structure with low temperature first-order field-induced metamagnetic phase transitions (TN = 58 K) and high spontaneous polarization (~ 63.3 μC·cm−2). The magnetostriction-polarization coupling in Mn2MnWO6 is evidenced by second harmonic generation effect, and corroborated by magnetic-field-dependent...

Helmholtz-Zentrum Berlin

Solar energy: Defects in Kesterite semiconductors studied using neutrons

A research team at the HZB has precisely characterised for the first time the various types of defects in kesterite semiconductors. They achieved this with the help of neutron scattering at the BER II research reactor and at Oak Ridge National Laboratory in the USA. The findings point to a means of guided optimisation for kesterite solar cells.

 

“The point defects we investigated experimentally really correspond quite well to the theoretical model of potential defects”, declared Dr. Galina Gurieva from the HZB Structure and Dynamics of Energy Materials group. “We can deduce concrete clues from this study as to which point defects in which concentration to expect in the given composition of kesterite thin films ”, says Gurieva. “This may...

Wired

The AI Company That Helps Boeing Cook New Metals for Jets

At HRL Laboratories in Malibu, California, materials scientist Hunter Martin and his team load a grey powder as fine as confectioner’s sugar into a machine. They’ve curated the powder recipe—mostly aluminum, blended with some other elements—down to the atom. The machine, a 3-D metal printer, lays the powder down a single dusting at time, while a laser overhead welds the layers together. Over several hours, the machine prints a small block the size of brownie.

 

HRL’s parent companies, Boeing and General Motors, want to 3-D print intricate metal parts in mass for their sleek new generation of cars and planes. Airbus has already installed the first-ever 3-D printed metal part on a commercial airplane, a bracket that attaches to its wings. But...

Phys.org

Neutrons reveal fast methane translational diffusion at the interface of two clathrate structures

Umbertoluca Ranieri, PhD student at ILL and EPFL, and lead author of this study says: "These results are important in improving our understanding of many fundamental non-equilibrium phenomena involving methane clathrate hydrates; for example, the replacement kinetics during gas exchange in case of conversion between the clathrate structures I and II. This knowledge will also help us to tackle important energy and environmental issues such as methane recovery from marine hydrates sediments and carbon dioxide capture in the future."

 

Gas clathrate hydrates are ice-like solids, in which gas molecules or atoms are trapped inside crystalline frameworks formed by water molecules. They have attracted considerable attention over the last decade...

Canadian Institute for Neutron Scattering

Neutron Beams Provide Insights Into Bio-Molecular Diffusion

Memorial University physicists are using neutron beams to shed light on the molecular behaviours that are fundamental to the inner workings of living cells.

 

In collaboration with physicists from the University of Wisconsin and Oak Ridge National Laboratory (ORNL) in the U.S., Yethiraj and graduate student Swomitra Palit demonstrated that neutron beams can indeed be used to obtain independent size measurements of polymers in crowded solutions. To get these measurements, they travelled to ORNL to use a specialized technique called ‘small-angle neutron scattering’ (SANS), which is currently unavailable in Canada (although a SANS beamline is presently being built at the McMaster Nuclear Reactor and should be completed in 2019).

 

Yethiraj and...

Phys.org

Elastic incoherent neutron scattering at ILL challenge the Lindemann criterion in proteins

Proteins are the nano-machines that Nature uses to perform most of the processes critical for the metabolism in cells. One of the key goals of life and physical sciences revolves around understanding the structural and dynamic properties of the native, transition, intermediate, and denatured states of proteins. The denaturation transition – defined as the transition of proteins from their specific native functional state to the unfolded inoperative state – is of particular interest, as it is defining the boundaries of stability and functionality of the phase diagram of proteins.

 

Internal subnanosecond timescale motions are also key for protein folding – without these proteins could not even fold in their native structure. Furthermore,...

Oak Ridge National Laboratory

The right mix: Water and neutrons with Eugene Mamontov

Eugene Mamontov’s background in both basic and applied science has made him a valued partner for scientists who come to the Spallation Neutron Source at ORNL in search of a better understanding of the water dynamics in their research—projects as diverse as studying plant cellulose or analyzing nanostructured membranes for desalination.

 

Mamontov is the lead instrument scientist for BASIS, the backscattering, crystal-analyzer spectrometer at the SNS that is particularly good at deciphering the dynamics of water in various systems.

 

“We predominately study hydrogen-bearing materials on BASIS, and many of them are water-related,” Mamontov said. “There’s a good reason we are so preoccupied with water. It is a molecule mostly made up of...

ISIS Neutron & Muon Source

Getting to grips with corrosion

Neutron reflectometry has been used to improve our fundamental understanding of corrosion and corrosion inhibitors.

 

In Neutron Reflectometry for Studying Corrosion and Corrosion Inhibition, published in Metals, Mary Wood and Stuart Clarke of the University of Cambridge discuss the great potential of neutron reflectometry (NR) to improve our fundamental understanding of corrosion and corrosion inhibitors. NR presents some challenges, in that very clean and flat samples are required, low neutron flux can dictate long measurement times and gaining access to international facilities is a competitive process. However, NR is a powerful and non-destructive tool that can characterise the thickness, roughness and composition of metal films, their...

Physics (APS)

Synopsis: Peering into a Molecular Magnet

Researchers characterize the spin couplings in the prototypical single-molecule magnet Mn12 using an advanced neutron scattering technique.

 

Single-molecule magnets could work as nanosized bits for future data storage technology. But, decades on from the discovery of the first molecular magnets, researchers still don’t have a good understanding of how the individual spins in the complex molecules interact. Now Paolo Santini of the University of Parma in Italy and his colleagues have characterized the spin couplings in the archetypal molecular magnet, the twelve-ion manganese cluster,  Mn12. The results—based on neutron scattering—could help in chemically designing new molecules with desired magnetic properties.

 

The Mn12 molecule has a...

Pan European Networks

Ultra-cold neutrons aid the search for dark matter

Since the start of its operation in 1985, the experimental installation ‘Physique Fondamentale 2’ (PF2) at the Institut Laue-Langevin (ILL) in Grenoble, France, has been the only user facility for ultra-cold neutron (UCN) research in the world, until recently.

 

Ultra-cold neutrons play an important role in addressing key questions of particle physics at the low-energy, high-precision frontier, complementary to the high-energy frontier probed at particle accelerators.

 

An unusual property of UCNs is that their kinetic energy is so small that they can become trapped in material and/or magnetic bottles, hence are observable for long times.

 

It is unsurprising then, that over the last 30 years since its inception, data generated on PF2 is...

Asian Scientist

Japan Scales Up Particle Physics Research

The Next-generation Neutrino Science Organization will oversee the Hyper-Kamiokande nucleon decay and neutrino experiment.

 

Scientists in Japan are pushing forward with the Hyper-Kamiokande project which aims to address the mysteries of the origin and evolution of the Universe’s matter. To realize these goals, it will combine a high intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC) with a new detector approximately ten times larger than the present Super-Kamiokande detector.

 

In collaboration with the Institute for Cosmic Ray Research (ICRR) and the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), the University of Tokyo announced the launch of its Next-generation Neutrino...

Linnæus University

New research may provide better electronic components in the future

Supported by a grant from the Swedish Research Council, researchers at Linnaeus University will conduct experimental and theoretical studies of magnetic topological materials, a field awarded the Nobel Prize in Physics 2016. Possible results of the project include new types of energy-efficient magnetoelectronic components.

 

Conductors, semiconductors and insulators. That is the traditional classification of materials based on their ability to conduct, partially conduct or not conduct electrical current. Examples of these three types of material are copper, silicon and plastic.

 

Over the past ten years, however, new materials with unique properties have been discovered, the so-called topological isolators (TI) and topological semimetals...

University of Sussex

Hunt for dark matter is narrowed by new University of Sussex research

Scientists at the University of Sussex have disproved the existence of a specific type of axion - an important candidate ‘dark matter’ particle - across a wide range of its possible masses.

 

The data were collected by an international consortium, the Neutron Electric Dipole Moment (nEDM) Collaboration, whose experiment is based at the Paul Scherrer Institut in Switzerland.   Data were taken there and, earlier, at the Institut Laue-Langevin in Grenoble.

 

Professor Philip Harris, Head of Mathematical and Physical Sciences at the University of Sussex, and head of the nEDM group there, said:

 

“Experts largely agree that a major portion of the mass in the universe consists of ‘dark matter’. Its nature, however, remains completely obscure. One...

Brock University

Brock physicist on the hunt for neutron beam source

A team of Canadian scientists, headed up by Brock University Associate Professor of Physics Thad Harroun, is travelling to Sweden next week in hopes of striking up a partnership to access the European Spallation Source (ESS), a neutron beam source facility being built there.

 

The meetings are meant to prepare for next year’s closure of Canada’s National Research Universal nuclear reactor in Chalk River, Ont.

 

The 60-year-old reactor — the world’s oldest operating research reactor — is slated to shut down in March 2018, after which Canadian and other scientists will no longer be able to use the highly specialized equipment in their experiments.

 

“We understand the decision, but we’re a casualty of that decision,” says Harroun, who is...

Oak Ridge National Laboratory

Cyanobacterial Studies Examine Cellular Structure During Nitrogen Starvation

Using nondestructive neutron scattering techniques, scientists are examining how single-celled organisms called cyanobacteria produce oxygen and obtain energy through photosynthesis.

 

Collaborators from Washington University in St. Louis and the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) are conducting a series of experiments to study the behavior of phycobilisomes—large antenna protein complexes in cyanobacteria cells—using the Bio-SANS instrument, beamline CG‑3, at the lab’s High Flux Isotope Reactor (HFIR). Phycobilisomes harvest light to initiate photosynthesis, and a better understanding of this process could help researchers design more efficient solar panels and other artificial structures that mimic...

Nature

China fires up next-generation neutron-science facility

Beam generator puts country in elite company for doing experiments in materials science and other fields.

 

China is revving up its next-generation neutron generator and will soon start experiments there. That will lift the country into a select group of nations with facilities that produce intense neutron beams to study the structure of materials.

 

The China Spallation Neutron Source (CSNS) in Dongguan, a 2.2-billion-yuan (US$331-million) centre, will allow the country’s growing pool of top-notch physicists and material scientists, along with international collaborators, to compete in multiple physics and engineering fields. Its designers also hope that the facility will lead to commercial products and applications ranging from batteries...

Phys.org

Neutrons probe oxygen-generating enzyme for a greener approach to clean water

A new study sheds light on a unique enzyme that could provide an eco-friendly treatment for chlorite-contaminated water supplies and improve water quality worldwide.

 

An international team of researchers led by Christian Obinger from the University of Vienna used neutron analysis at Oak Ridge National Laboratory, x-ray crystallography and other techniques to study the chlorite dismutase enzyme. This naturally occurring protein can break down chlorite, an industrial pollutant found in groundwater, drinking water and soils, into harmless byproducts, but its catalytic process is not well understood. Understanding how the bacterial enzyme converts chlorite into chloride and oxygen could open possibilities for future applications in...

International Business Times

This super-sensitive, flexible material generates electric energy on being stretched or compressed

The thin and flexible material works on the piezoelectric effect – the idea of converting mechanical stress into electric charges.

 

A group of researchers has developed a unique rubber-like organic material that produces electricity on being stretched or compressed.

 

The thin and flexible material, which is quite hard to produce at present, works on the piezoelectric effect – the ability of certain materials to convert mechanical stress into electric charges, Phys.orgreports.

 

The phenomenon has been seen widely in analogue record players that guide a needle through the grooves of a record to generate mechanical vibrations. These vibrations are then converted into electric impulses, which are further amplified to generate sound waves.

 

...

Canadian Institute for Neutron Scattering

Neutrons Aid The Development Of Cancer-Killing Nanoparticles

A University of Manitoba physicist is part of an international research team developing a cancer treatment method that uses magnetic nanoparticles to kill tumours with heat.

 

The idea of using heat to destroy cancerous tumours has been around for a long time. However, according to Johan van Lierop, a professor of physics at the University of Manitoba, “the challenge is to overheat the tumour without overheating the surrounding healthy tissue as well.” So far, this challenge has limited the use of heat treatment to only a handful of cancer applications, such as treating certain kinds of brain tumours.

 

Medical researchers around the world are feverishly searching for ways to overcome this challenge, as today’s cancer treatments don’t...

Canadian Institute for Neutron Scattering

Neutron Experiments Add Confidence To Nuclear Reactor Safety

Canadian Nuclear Laboratories is a leader in sciences that are foundational to reactor safety—including the ability to predict the lifetimes of critical components used in nuclear power stations around the world, especially those in CANDU reactors.

 

One of the distinct advantages of CANDU reactors is the fact that they don’t require enriched fuel to operate. That’s because the CANDU design uses heavy water, which enables the use of natural (i.e., unenriched) uranium as fuel.

 

In the latter half of the 20th century, while other nuclear vendor nations were focusing on light water reactors (which do depend on enriched fuel), Canada developed its heavy water technology. Today, there are several CANDUs operating overseas and a fleet of CANDU...

Phys.org

Machine learning and deep learning programs provide a helping hand to scientists analyzing images

Physicists on the MINERvA neutrino experiments at the Department of Energy's Fermilab faced a conundrum. Their particle detector was swamping them with images. The detector lights up every time a neutrino, a tiny elementary particle, breaks into other particles. The machine then takes a digital photo of all of the new particles' movements. As the relevant interactions occur very rarely, having a huge amount of data should have been a good thing. But there were simply too many pictures for the scientists to be able to analyze them as thoroughly as they would have liked to.

 

"Most of the scientific work that's being done today produces a tremendous amount of data where basically, you can't get human eyes on all of it," said Catherine Schuman...

Journal of Nuclear Science & Technology

Measurements of neutronic characteristics of rectangular and cylindrical coupled hydrogen moderators

Extensive simulation calculations were performed in the design studies of the coupled hydrogen moderator for the pulsed spallation neutron source of the Japan Proton Accelerator Research Facility (J-PARC). It was indicated that a para-hydrogen moderator had an intensity-enhanced region at the fringe part, and that pulse shapes emitted from a cylindrical para-hydrogen moderator gave higher pulse-peak intensities with narrower pulse widths than those from a rectangular one without penalizing the time-integrated intensities. To validate the peculiar distribution and advantages in pulse shapes experimentally, some measurements were performed at the neutron source of the Hokkaido University electron linear accelerator facility. It was observed...

Ames Laboratory

Perfectly frustrated metal provides possible path to superconductivity, other new quantum states

The U.S. Department of Energy’s Ames Laboratory has discovered and described the existence of a unique disordered electron spin state in a metal that may provide a unique pathway to finding and studying frustrated magnets.

 

Condensed matter physicists use the term “frustrated” to describe a kind of magnet in which the spins fail to align into stable magnetic order. In perfectly frustrated magnets called spin liquids, the disordered magnetism of these materials persists even at very low temperatures, and their unique properties are of interest in the development of quantum computing and high-temperature superconductivity.

 

The materials investigated to search for this perfectly frustrated magnetic state are typically insulators. But Ames...

Oak Ridge National Laboratory

Neutron spectroscopy reveals common ‘oxygen sponge’ catalyst soaks up hydrogen too

Having the right tool for the job enabled scientists at the Department of Energy’s Oak Ridge National Laboratory and their collaborators to discover that a workhorse catalyst of vehicle exhaust systems—an “oxygen sponge” that can soak up oxygen from air and store it for later use in oxidation reactions—may also be a “hydrogen sponge.”

 

The finding, published in the Journal of the American Chemical Society, may pave the way for the design of more effective catalysts for selective hydrogenation reactions. Selective hydrogenation is the key to producing valuable chemicals, for example, turning triple-bonded hydrocarbons called alkynes selectively into double-bonded alkenes—starting materials for the synthesis of plastics, fuels and other...

Oak Ridge National Laboratory

Resisting the resistance: Neutrons search for clues to combat bacterial threats

The discovery of penicillin almost 90 years ago ushered in the age of modern antibiotics, but the growth of antibiotic resistance means bacterial infections like pneumonia and tuberculosis are becoming more difficult to treat.

 

Researchers at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) are conducting a series of experiments at ORNL’s Spallation Neutron Source (SNS) to make sense of this phenomenon. Using the MaNDi instrument, SNS beamline 11B, they hope to better understand how bacteria containing enzymes called beta-lactamases resist the beta-lactam class of antibiotics. Any antibiotic containing a beta-lactam ring made up of organic compounds falls under this category.  

 

“We are looking for answers on a...

National Geographic

Mysterious Void Discovered in Egypt's Great Pyramid

Discovered using cosmic-ray muon detectors, the cavity is the first major inner structure discovered in the pyramid since the 1800s.

 

Egypt’s Great Pyramid of Giza—one of the wonders of the ancient world, and a dazzling feat of architectural genius—contains a hidden void at least a hundred feet long, scientists announced on Thursday.

 

The void is the first large inner structure discovered within the 4,500-year-old pyramid since the 1800s—a find made possible by recent advances in high-energy particle physics. The results were published in the journal Nature.

 

“This is definitely the discovery of the century,” says archaeologist and Egyptologist Yukinori Kawae, a National Geographic Emerging Explorer. “There have been many hypotheses...

Institut Laue-Langevin

Not easy to (un)twist! MnSi under a Magnetic Field

ILL, ISIS, Ames Lab, and TU-Delft collaborate on chiral magnetism study

 

Chiral magnetism attracts a great amount of attention since the observation of chiral skyrmion lattices in the reference system MnSi. These chiral skyrmions have dimensions significantly larger than the lattice constant, are topologically protected, and may have applications in spintronics and novel devices for information storage. In systems like MnSi the non-trivial behavior emerges from a relativistic effect, the Dzyaloshinsky-Moriya (DM) interaction, that twists the magnetic moments with respect to each other.

 

This interaction becomes noticeable in the absence of a center of symmetry of the crystallographic structure and it is usually weak. Nevertheless, it...

World Economic Forum

It's up to the world of science to provide everyone with clean, affordable water

Thom Mason | Senior Vice President for Laboratory Operation, Battelle Memorial Institute, USA

 

One of the most fundamental measures of quality of life is access to clean water. Today two thirds of humanity face water stress at some point during the year and one in 10 do not have clean water. As populations grow so will the demands for drinking water and agriculture. At the same time climate change will impact available resources.

 

Neutron sources such as the Spallation Neutron Source at Oak Ridge National Laboratory and the European Spallation Source being built right next to MAX-IV use neutrons to explore the fundamental properties of advanced materials. Supercomputers couple the information on structure and dynamics obtained from...

Oak Ridge National Laboratory

Neutrons reveal suppression of magnetic order in pursuit of a quantum spin liquid

Paige Kelley, a postdoctoral researcher with a joint appointment at the University of Tennessee and the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), is using neutrons to study specific crystal properties that could lead to the realization of a quantum spin liquid, a novel state of matter that may form the basis of future quantum computing technologies.

 

“In a quantum spin liquid, spins continually fluctuate due to quantum effects and never enter a static ordered arrangement, in contrast to conventional magnets,” Kelley said. “These states can host exotic quasiparticles that can be detected by inelastic neutron scattering.”

 

Recently, she and her team saw evidence of those quasiparticles in alpha-ruthenium...

Pan European Networks

A novel picture of thermal conductivity

Dr Marc de Boissieu, senior scientist at CNRS, tells PEN about new research on thermal conductivity in complex materials

 

The engineering of thermal conductivity in semiconducting materials is a central issue in the development of modern nano- and microtechnologies, and low thermal conductivity is important in materials used in technology products as it provides thermal insulation and thus the reduction of heat transfer, ensuring the products do not overheat.

 

In new neutron experiments conducted at the Institut Laue-Langevin (ILL) and the French National Centre for Scientific Research (CNRS), researchers have provided a direct quantitative measurement of phonon lifetimes in a clathrate, offering a novel picture of thermal conductivity in...

Phys.org

Scientists question assumptions about planet formation

A paper published this week in Astrophysical Journal, led by Open University academics, has examined the exact structure and behaviour of the icy particles that collide and grow at the onset of planet-formation, in a series of revealing experiments at the UK's world-leading neutron source, ISIS.

 

Senior Lecturer in Astronomy at the School of Physical Sciences, Dr. Helen Fraser, says, "We are already aware of thousands of planets orbiting stars in our own galaxy, as remnants of star-formation, and yet there still isn't a model anywhere in science that can explain exactly how planets form. Our basic understanding is that small particles stick together, building bigger particles, which then also stick, and so forth, until eventually, we have...

Oak Ridge National Laboratory

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

OAK RIDGE, Tenn., Oct. 16, 2017 – Scientists at the Department of Energy’s Oak Ridge National Laboratory have performed neutron structural analysis of a vitamin B6-dependent protein, potentially opening avenues for new antibiotics and drugs to battle diseases such as drug-resistant tuberculosis, malaria and diabetes.

 

Specifically, the team used neutron crystallography to study the location of hydrogen atoms in aspartate aminotransferase, or AAT, an enzyme vital to the metabolism of certain amino acids.

 

“We visualized the first neutron structure of a vitamin B6 enzyme that belongs to a large protein family with hundreds of members that exist in nature,” said ORNL’s Andrey Kovalevsky, a senior co-author of the study, which was published i...

The Washington Post

Scientists detect gravitational waves from a new kind of nova, sparking a new era in astronomy

Some 130 million years ago, in a galaxy far away, the smoldering cores of two collapsed stars smashed into each other. The resulting explosion sent a burst of gamma rays streaming through space and rippled the very fabric of the universe.

 

On Aug. 17, those signals reached Earth — and sparked an astronomy revolution.

 

The distant collision created a “kilonova,” an astronomical marvel that scientists have never seen before. It was the first cosmic event in history to be witnessed via both traditional telescopes, which can observe electromagnetic radiation like gamma rays, and gravitational wave detectors, which sense the wrinkles in space-time produced by distant cataclysms. The detection, which involved thousands of researchers working at...

Institute of Physics: Physics World

Physics World Focus on Neutron Science

  • Jonathan Taylor, head of the ESS Data Management & Software Centre, reviews the data-management challenges facing neutron sources and other large-scale research facilities as they strive to maximize the scientific and economic impact of their work
  • Neutron scattering experiments can generate up to 50 terabytes of data. Jean-François Perrin explains how scientists at the Institut Laue-Langevin, where he is head of computing services, manage these data appropriately.
  • Mats Lindroos, head of the accelerator division at the European Spallation Source (ESS), reflects on the progress of the flagship new neutron facility being built outside Lund, Sweden.
  • Casper Rutjes and Ute Ebert trace how our understanding of thunderstorm physics has evolved in...

STFC / ISIS / Univ. of Leeds

New research could explain how river-like channels formed on Mars

A new research paper published today could help to explain how the mysterious channels, which look like dried-up riverbeds, could have formed on the surface of Mars.

 

ISIS senior scientist Dr Alan Soper was part of the research team, and he said: “This research is particularly fascinating because it could help us to answer some of the great mysteries about life on other planets... [It] represents a very exciting step forward in the search for extra-terrestrial liquid water—and with it, life.”

 

Ref.: Highly compressed water structure observed in a perchlorate aqueous solution (Nature Communications)

Phys.org

Mimetic Martian water is under pressure

Researchers investigating whether liquid water could exist on Mars have provided new insight into the limits of life on the red planet.

 

A team led by Dr Lorna Dougan from the University of Leeds has analysed the structure of water in a magnesium perchlorate solution —what they refer to as "mimetic Martin water"—to better understand how the liquid could exist on the Martian surface.

 

Martian soil samples gathered by the Phoenix Lander in 2009 found calcium and powerful oxidants, including magnesium perchlorate. This fuelled speculation that perchlorate brine flows might be the cause of channelling and weathering observed on the planet's surface.

 

Ref.: Highly compressed water structure observed in a perchlorate aqueous solution (Nature...

Phys.org

Superconductivity found in thin films of TiO2

Many of us are familiar with titanium dioxide (TiO2), a whitener commonly used in sunscreens and paints such as the white lines seen on tennis courts. Less well known are other higher titanium oxides—those with a higher number of titanium and oxygen atoms than TiO—that are now the subject of intensifying research due to their potential use in next-generation electronic devices.

 

Now, researchers at Tokyo Tech have reported superconductivity in two kinds of higher titanium oxides prepared in the form of ultrathin films. With a thickness of around 120 nanometers, these materials reveal properties that are only just beginning to be explored.

 

"We succeeded in growing thin films of Ti4O7 and γ-Ti3O5 for the first time," says Kohei Yoshimatsu,...

ISIS Neutron Source

The past, present and future of inelastic neutron scattering

Emma Cooper

The use of electron-volt neutron spectroscopy in materials research is a growing area of neutron science, capitalizing upon the unique insights provided by epithermal neutrons on the behaviour and properties of an increasing number of complex materials.

​Professor Carla Andreani, recipient of the 2016 Giuseppe Occhialini Medal and Prize for her “outstanding contributions to novel experimental techniques and methods in neutron spectroscopy and her tireless commitment to fostering the British–Italian collaboration in neutron science" has published two reviews in Advances in Physics, which capture the rapid progress in the field.

CERN Courier

Neutrinos on nuclei

Detailed modelling of the way neutrinos interact with nuclei is crucial if DUNE and other long-baseline neutrino experiments are to extract essential neutrino properties.

A major focus of experiments at the Large Hadron Collider (LHC) is to search for new phenomena that cannot be explained by the Standard Model of particle physics. In addition to sophisticated analysis routines, this requires detailed measurements of particle tracks and energy deposits produced in large detectors by the LHC’s proton–proton collisions and, in particular, precise knowledge of the collision energy. The LHC’s counter-rotating proton beams each carry an energy of 6.5 TeV and this quantity is known to a precision of about 0.1 per cent – a feat that requires...

CERN Courier

Obituary: Bjørn Jacobsen 1961-2017

Norwegian delegate to the CERN Council and previous chair of the CERN Finance Committee, Bjørn Jacobsen, passed away on 13 June after a few months of illness.

 

Bjørn co-ordinated the support of all physics programmes of the Research Council of Norway. More recently he served as a special adviser of the Norwegian contribution to large international infrastructure programmes such as the European Spallation Source, the European Incoherent Scatter Scientific Association and the Nordic Optical Telescope.

 

Jacobsen studied physics at the University of Oslo, where he obtained his PhD in space physics in 1991. He spent the next 12 years...

sciencemag.org

Canada’s neutron scientists lament closure of world’s oldest nuclear reactor

The world’s oldest operating nuclear reactor is in the twilight of its life, but the scientists who rely on it for their research are not going gentle into that good night. Canadian scientists are upset about the imminent closure of the Chalk River research reactor and are lobbying the government for a CA$200 million ($162 million) commitment so they can continue to perform materials research using the neutron beams that research reactors provide.

Science X Phys.org

Neutrons provide a novel picture of thermal conductivity in complex materials

A multi-partner study published today in Nature Communications has addressed phonon lifetime measurement challenges using inelastic neutron scattering (INS) and neutron resonant spin-echo (NRSE) experiments conducted at the Institut Laue Langevin (ILL) in Grenoble, and Laboratoire Léon Brillouin (LLB) Saclay, France. Whereas the "glass-like" thermal conductivity of the clathrate Ba7.81Ge40.67Au5.33 has frequently been associated with a short phonon lifetime, this study measured for the first time to date a very long phonon lifetime using a large single crystal sample of high quality. The study also reveals a dramatic reduction of the number of phonons carrying heat, as a result of structural complexity, allowing a simple and general...

Science X Phys.org

First neutron beam produced: A great milestone for China Spallation Neutron Source

Researchers produced a neutron beam at the China Spallation Neutron Source (CSNS) for the first time on August 28. The achievement is a milestone for the CSNS project as it marks the completion of main construction and the start of the test operation phase. The national CSNS facility, located in Dongguan, Guangdong Province, should be fully completed and open to domestic and international users by 2018, as scheduled.

Oak Ridge National Laboratory

ORNL researchers turn to ‘deep learning’ to solve science’s biggest data problem

A team of researchers from Oak Ridge National Laboratory has been awarded nearly $2 million over three years from the U.S. Department of Energy to explore the potential of machine learning in revolutionizing scientific data analysis.

The Advances in Machine Learning to Improve Scientific Discovery at Exascale and Beyond (ASCEND) project aims to use deep learning to assist researchers in making sense of massive datasets produced at the world’s most sophisticated scientific facilities.

Oak Ridge National Laboratory

World’s smallest neutrino detector finds big physics fingerprint

OAK RIDGE, Tenn.—After more than a year of operation at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world’s smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.

The research, performed at ORNL’s Spallation Neutron Source (SNS) and published in the journal Science, provides compelling evidence for a neutrino interaction process predicted by theorists 43 years ago, but never seen.

Canadian Institute for Neutron Scattering

Neutrons Help To Remove Barriers Standing In The Way Of Safer, Better Batteries For Electric Vehicles

After using neutron beams to better understand materials required for safer energy storage, University of Calgary chemists and their international collaborators were able to demonstrate a prototype battery that showed major improvements to performance.

Electric vehicles promise to revolutionize transportation—but safer, better-performing batteries must first be developed before this potential can be turned into a reality. One of the primary challenges is to find a less hazardous electrolyte material for the batteries used in ‘green’ cars. Indeed, the lithium-ion batteries used in today’s electric and plug‑in hybrid vehicles (as well as in portable electronic devices) typically contain flammable liquids as their electrolyte; as such, faulty...

Niels Bohr Institute

Iron secrets behind superconductors unlocked

SUPERCONDUCTORS: Due to magnetism iron should - theoretically - be a poor superconductor. Nevertheless certain ironbased materials possess fine superconducting properties. Why? Because the five unbound electrons found in iron - as a result of individual modes of operation, it turns out - facilitate superconductivity. This new, long sought-for explanation - appearing in this weeks issue of Science - is the result of international co-operation between experts from the Niels Bohr Institute (NBI) i Copenhagen, Denmark, and colleagues from a number of other scientific institutions in Europa and USA.

Nature Scientific Reports

Capturing 3D Water Flow in Rooted Soil by Ultra-fast Neutron Tomography

Non-invasive imaging techniques are the key for better understanding the root-soil interaction which is of great relevance for both plant and soil scientists. Neutrons are a unique probe for non-destructive investigation of root-soil systems.

We demonstrated the ability of ultra-fast tomography to quantitatively image quick changes of water content in the rhizosphere and outlined the value of such imaging data for 3D water uptake modelling. The presented method paves the way for time-resolved studies of various 3D flow and transport phenomena in porous systems.

Pan European Networks

Focus: Neutrons versus disease

The Institut Laue-Langevin’s Anne Martel and Giovanna Fragneto explain how neutrons are supporting the fight against against chronic conditions like diabetes and dementia.

At the ILL, we recently conducted a study in collaboration with researchers from the Institute for Molecular Engineering at the University of Chicago and Institut de Biologie Structurale in Grenoble, with the aim of enhancing our knowledge of the cytotoxic mechanisms of islet amyloid polypeptide (IAPP), a hormone co-secreted with insulin by ß-cells. We investigated the interaction between IAPP and model membranes – both membrane permeation and the structural effects of IAPP – using a range of techniques including neutron scattering and reflectometry methods. This study...

University of Copenhagen

Researchers will find the structure of the smallest building blocks in nano-chemistry

SUBSTANCES IN SOLUTION AND SOLID MATERIALS: Two young researchers from University of Copenhagen have received funding - DKK 10 million each - to build up research groups to study the relationship between the structure of materials at the nano-scale and their properties. New knowledge in this can provide a foundation for everything from better batteries to purification of nuclear waste.

Construction update

December 12, 2017

The LINAC's Ion Source components were delivered from Italy today. The milestone delivery rolled into the snow-covered ESS construction site in the morning, was offloaded into the Front End Building and HEBT loading bay, and lowered into the Accelerator Tunnel.

View
cea jean l'arive photo

ESS Procurements

View ongoing procurements, market surveys and forthcoming procurements.

Partnerships & Collaborations

Technical Collaboration With J-PARC Strengthened Through New Agreement

Continuing cooperation between the European Spallation Source and Japan’s world-leading spallation source...

ESS and MAX IV: Collaboration and Coordination for Better Science

The European Spallation Source and MAX IV Laboratory signed a formal Memorandum...

Building the Heart of ESS in Spain

Spain was one of the first countries to commit to the construction of the...

EU Supports Local Neutron Researchers: Interview with Małgorzata Makowska

Małgorzata Makowska studied how to optimise solid-oxide fuel cells, a...

Agreement Between ESS and ILL Signals Increased Cooperation on R&D

The Memorandum of Understanding will bring cooperation on instrument and...